I've been trawling in more detail through the 11 papers in this special issue of
Science. Most of them are heavily tarred with C. Owen Loveday's brush, and not everyone out there agrees with him, but he has assembled a persuasive argument that today's African apes could not have resembled the common ancestor between apes and humans, that human ancestors did not pass through an ape-like phase on their way to becoming human, and that the common ancestor probably possessed a number of features we more commonly associate with monkeys, older Miocene apes, and very old recent fossil discoveries like Toumai and Millennium Man. If Lovejoy, White, and their colleagues are right, modern apes like the chimpanzee have evolved greater changes to their skeleton than humans have in this last 6 million years - i.e. they have evolved at least as far and as fast as have humans albeit in different directions, since the split from the last common ancestor. It is clear that we cannot use chimpanzees as any kind of template for human evolution, whether we are talking about bones, brains, teeth or behaviour. Here are some notes I made, including some quotes from various Science articles I consider important:
“We have seen the ancestor and it is not a chimpanzee”, says Tim White. This means Ardi is not a transitional form between chimps and us. Although about as tall as a chimp, and with a brain-size to match, she did not knuckle-walk or swing through the canopy. She walked upright and probably ate nuts, insects and small mammals. A “facultative” biped.
There is interesting detail about the skull . Ardi’s lower face “had a muzzle that juts out less than a chimp’s; the cranial base is short front to back indicating that her head balanced atop the spine as in later upright walkers, rather than to the front of the spine, as in quadrupedal apes. Her face is in a more vertical position than in chimpanzees and her teeth, like those of all later hominins, lack the dagger-like sharpened upper canines seen in chimpanzees. The team realized that this combination of traits matches those of an even older skull - 6-7 million years -
Sahelanthropus tchadensis (Toumai) found by Brunet in Chad. They conclude that both represent an early stage of human evolution, distinct from both
Australopithecus and chimpanzees.... Another earlier species of
Ardipithecus, kadabba, dated 5.5 to 5.8 mya - perilously close to estimates of chimp-human divergence - is part of that same grade and its teeth match another ancient specimen -
Orrorin tugenensis (Millennium Man) -which dates back to over 6 mya.
Ardi’s foot is interesting in that she has the big, opposable big toe - which is a primitive characteristic, but the four other toe bones are shaped so as to allow the foot to act as a rigid lever as she pushes off on it - unlike the toes of a chimp which all curl flexibly like a hand, and more like the foot of monkeys which spring rather than manipulate their way through the canopy. “The upper blades of Ardi’s pelvis are shorter and broader than a chimp’s. They would have lowered the trunk’s centre of mass allowing her to balance on one foot at a time as she walked. Lovejoy also infers from Ardi’s pelvis that the spine was long and curved like a human’s, rather than stiff and short like a chimp’s. These changes suggest to him that
Ar. ramidus “has been bipedal for a very long time”’.
Lovejoy et al on hands:- “
Ardipithecus hands were very different from those of African great apes. Its wrist joints were not as stiff as those of apes, and the joints between their palms and fingers were much more flexible. Moreover, a large joint in the middle of the wrist (the midcarpal joint) was especially flexible, being even more mobile than our own. This would have allowed
Ardipithecus to support nearly all of its body weight on its palms when moving along tree branches (palmigrade movement), so that it could move well forward of a supporting fore-limb without first releasing its grip on a branch.
This discovery ends years of speculation about the course of human evolution. Our ancestors’ hands differed profoundly from those of living great apes, and therefore the two must have substantially differed in the ways they climbed, fed, and nested. It is African apes who have evolved so extensively since we shared our last common ancestor, not humans or our immediate hominin ancestors. Hands of the earliest hominids were less ape-like than ours and quite different from those of any living form.
Ardipithecus also shows that our ability to use and make tools did not require us to greatly modify our hands. Rather, human grasp and dexterity were long ago inherited almost directly from our last common ancestor with chimpanzees. We now know that our earliest ancestors only had to slightly enlarge their thumbs and shorten their fingers to greatly improve their dexterity for tool-using.”
Absence of knuckle-walking is a clincher. Our ancestors never did it - which, as
Science puts it, “throws a monkey-wrench into a hypothesis about the last common ancestor of living apes and humans.” It could just all mean that the common ancestor looked more like ancient African apes than chimps and gorillas - rather than human ancestors passing through a chimp-phase in which chimps and gorillas remained. Which would mean that chimps and gorillas independently arrived at their numerous similarities (since gorillas split off earlier than 5 to 7 mya at 6.2 to 8.4 mya). This is very hard to swallow. David Pilbeam, for one, remains somewhat skeptical - and still leaves room for a version of evolution which has our ancestors moving through a chimp-like phase.