Are we humans simply remodelled apes? Chimps with a tweak? Is the difference between our genomes so minuscule it justifies the argument that our cognition and behaviour must also differ from chimps by barely a whisker? If “chimps are us” should we grant them human rights? Or is this one of the biggest fallacies in the study of evolution? NOT A CHIMP argues that these similarities have been grossly over-exaggerated - we should keep chimps at arm’s length. Are humans cognitively unique after all?
Saturday, 31 July 2010
Carol Jahme Goes Ape
Agony aunt and comedienne Carl Jahme has taken a monkey suit to the Edinburgh Festival, where, describing herself as a humanzee, or chimp human hybrid, she intends to regale festival-goers with a comic look at human evolution and origins. In this article she trots out the depressingly familiar list of half-truths about the chimpanzee human relationship - no longer are we unique in making tools, fire, having language etc. etc. She allies herself with Richard Dawkins' bizarre wish for a humanzee hybrid to exist because "it would change everything" and will exhort her audiences to get in touch with their "inner ape". Humour it may provide - accurate portrayal of human origins it certainly will not. More of the "chimps 'r us" brigade!
Thursday, 29 July 2010
Cur cognition: Do stray dogs have qualitatively different kinds of canine minds?
Another Sciam post from the ever amusing Jesse Bering. Here he takes a long look at dog social cognition - particularly the extraordinary ability of pet dogs to interpret cues like pointing from humans. Stray dogs, he muses, who have been stray, clearly, for generations, display different social cognition to beloved pets. So what is the default condition for dog social cognition? He refers to a series of experiments using human pointing cues with stray dogs on the one hand, and pet dogs on the other and comments that the former category could only reliably correctly interpret less ambiguous cues like a finger pointing to a source of food barely centimetres from its tip. Is the acute social cognition of pet dogs a developmental attribute after all, rather than some evolutionary quirk of the dog brain arrived at through thousands of years of domestication? Although Jesse mentions Brian Hare's research he neglects what might be an important finding of Hares' - that dogs in New Guinea, which had been domesticated but then had returned to a feral condition, appeared to have lost a great deal of the sharpness of social cognition displayed by human commensal dogs. In other words, evolution had rapidly acted to reverse the functional analogue of human social cognition that tamer ancestors had shown.
Nevertheless, Bering is never boring and I strongly suggest everyone interested in a breezy look at contemporary evolutionary science to subscribe to his RSS feed.
Nevertheless, Bering is never boring and I strongly suggest everyone interested in a breezy look at contemporary evolutionary science to subscribe to his RSS feed.
Wednesday, 28 July 2010
Monkey Generosity: No Strings Attached
In my final chapter I point out that altruism need not simply be a product of evolutionary proximity to humans, but that its emergence may depend on the social structure of any species. Primate species that practice allo-parenting, for instance, like marmosets - where the adults cooperate in the raising and care of the kids irrespective of genetic relationship - demonstrate a greater willingness to facilitate access to food for each other than non allo-parenting species which are more likely to be selfish hoarders. This article, based on he research of Charles Snowden's group at the University of Wisconsin-Madison, shows the propensity for forgiveness, or rather perhaps, the erosion of mistrust between cotton-top tamarin pairs, over time, when one of them has been perceived by the other of selfish behaviour. In experiments where one member of the pair can elect to withhold or dole out food to the other member who has wronged them in the recent past, altruistic sharing soon reasserts itself.
New Hypothesis For Human Evolution And Human Nature
Well, of course, nothing under the sun is truly new, but Pat Shipman has come up with a thesis about the evolution of human behaviour which hangs on our growing understanding of animals that came about through our domestication of them.
"Domestication, she explained, is a process that takes generations and puts selective pressure on abilities to observe, empathize, and communicate across species barriers. Once accomplished, the domestication of animals offers numerous advantages to those with these attributes. "The animal connection is an ancient and fundamentally human characteristic that has brought our lineage huge benefits over time," Shipman said. "Our connection with animals has been intimately involved with the evolution of two key human attributes -- tool making and language -- and with constructing the powerful ecological niche now held by modern humans."
It looks as if Shipman buys into the disputed view that humans domesticated wild wolves by importing pups into their camps - an implausible thesis in itself. As the article quotes her:
Shipman concludes that detailed information about animals became so advantageous that our ancestors began to nurture wild animals -- a practice that led to the domestication of the dog about 32,000 years ago. She argues that, if insuring a steady supply of meat was the point of domesticating animals, as traditionally has been assumed, then dogs would be a very poor choice as an early domesticated species. "Why would you take a ferocious animal like a wolf, bring it into your family and home, and think this was advantageous?" Shipman asks. "Wolves eat so much meat themselves that raising them for food would be a losing proposition."
Well you wouldn't. But wild wolves and dog-like canids might become commensal with humans by inhibiting their fight-flight reactions the better to scavenge around the perimeter of human encampments. More ethologically-minded early humans might then have begun to perceive the potential value of these self-taming animals as guards and hunting allies etc. etc.
Nevertheless her "animal connection" deserves a close look at. As the article says-
"Establishing an intimate connection to other animals is unique and universal to our species," said Shipman, a professor of biological anthropology. Her paper describing the new hypothesis for human evolution based on the tendency to nurture members of other species will be published in the August 2010 issue of the journal Current Anthropology.
"Domestication, she explained, is a process that takes generations and puts selective pressure on abilities to observe, empathize, and communicate across species barriers. Once accomplished, the domestication of animals offers numerous advantages to those with these attributes. "The animal connection is an ancient and fundamentally human characteristic that has brought our lineage huge benefits over time," Shipman said. "Our connection with animals has been intimately involved with the evolution of two key human attributes -- tool making and language -- and with constructing the powerful ecological niche now held by modern humans."
It looks as if Shipman buys into the disputed view that humans domesticated wild wolves by importing pups into their camps - an implausible thesis in itself. As the article quotes her:
Shipman concludes that detailed information about animals became so advantageous that our ancestors began to nurture wild animals -- a practice that led to the domestication of the dog about 32,000 years ago. She argues that, if insuring a steady supply of meat was the point of domesticating animals, as traditionally has been assumed, then dogs would be a very poor choice as an early domesticated species. "Why would you take a ferocious animal like a wolf, bring it into your family and home, and think this was advantageous?" Shipman asks. "Wolves eat so much meat themselves that raising them for food would be a losing proposition."
Well you wouldn't. But wild wolves and dog-like canids might become commensal with humans by inhibiting their fight-flight reactions the better to scavenge around the perimeter of human encampments. More ethologically-minded early humans might then have begun to perceive the potential value of these self-taming animals as guards and hunting allies etc. etc.
Nevertheless her "animal connection" deserves a close look at. As the article says-
"Establishing an intimate connection to other animals is unique and universal to our species," said Shipman, a professor of biological anthropology. Her paper describing the new hypothesis for human evolution based on the tendency to nurture members of other species will be published in the August 2010 issue of the journal
Oxytocin Gene Variants, Prosocial Behaviour And Associated Brain Structure
In my chapter THE APE THAT DOMESTICATED ITSELF I detail a geat deal of research, some of it featuring Andreas Meyer-Lindenburg, which linked variants in serotonin transporter gene and MAO-A to hyper-vigilant or anti-social behaviour in which there were correlated differences between carriers of long variants and short variants of these genes and the strength of coupling, and therefore feedback, between the amygdala and frontal cortex structures in the brain. Here, Meyer-Lindenburg and colleagues continue the tie-up between gene variants, pro-social behaviour and brain structure by looking at oxytocin. Interesting stuff. Here's the abstract:
Abstract
The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance.
Abstract
The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance.
The Evolution Of Gene Regulation
Really interesting article by Miranda Robertson about the need to look outside gene number and small changes to DNA sequence for the explanation for organismal diversity and complexity. The article pays due homage to the path-breaking work in the 1970s of Allan Wilson and Mary-Claire King and others - well before the day of modern genomics technology - in pointing the finger at gene regulation, rather than sequence evolution in genes. Robertson then up-dates this picture by looking at RNA regulation.