Prosody, as the authors point out, is the melody and intonation of speech and involves the rhythm, rate, pitch and voice quality to relay both linguistic and emotional information. It has long been known, they say, that the production of prosody is an area where the premotor cortex is specialized, and it was thought that the perception of prosody took place mainly in the right temporal lobe. They set out to test whether or not the premotor cortex was also involved. They discovered shared networks for production and perception of emotional prosody in motor-related regions of the left inferior frontal gyrus and another region in the dorsal premotor cortex. They discovered shared netqworks for perception and production of linguistic prosody in the left inferior frontal gyrus too, together with the anterior cingulate cortex and insula (two prominent parts of the "social brain".) Here is the start of their conclusions:
"We found areas in the premotor cortex, including the left inferior frontal gyrus and the left dorsal premotor cortex were active for both the perception and production of prosody. This was true for both emotional prosody and linguistic prosody. These results are consistent with previous findings of activity in premotor regions during prosody perception. The current result indicates a link between perception and production, where brain areas that are commonly thought to be involved with motor planning are also active for perception. While there have been numerous previous reports of perceptual processing in motor areas for action observation, for the sounds of actions, and even for speech, to our knowledge this is the first report of “mirror” processing for prosody. It may indicate that some components of prosodic perception involve mapping the heard speech to areas that are important for producing that same speech. Such mapping of acoustic signals to articulatory signals is reminiscent of the motor theory of speech perception."
So, we are back in disputed "mirror neuron" territory again - and especially the possible role of mirror neurons in the perception and production of speech - hence the reference to a motor theory of speech acquisition. They go on:
Interestingly, our data indicate that common motor areas for production and perception of prosody were found in only the left hemisphere (left IFG and premotor cortices). This was true for both linguistic and emotional prosody. Thus, while emotional prosody perception and also prosody production are known to activate the right hemisphere, “mirror” regions for prosody seem to be stronger in the left hemisphere. This is consistent with all previous reports of an auditory mirror system as being lateralized to the left hemisphere, and may indicate a special role in the left premotor cortex for more multimodal processing (motor, visual, and auditory), while the right equivalent areas instead may be stronger in motor and visual properties rather than auditory properties."
This is consistent with a multi-modal role for the anterior language centre of the brain - Broca's area. Now we get to the "social brain" bit:
"Prosodic ability is known to correlate with deficits associated with affective components of empathic processing. This is best observed in individuals with psychopathy. These individuals, who often score low on emotional aspects of empathy, also tend to score poorly on the ability to perceive prosody. Our behavioral results further support a positive correlation between ability to perceive prosody and ability to feel emotional aspects of empathy. We found that individuals who scored higher on measures of empathy showed more activity during emotional prosody perception in anatomically the same premotor areas that we previously found to be active for the perception and production of prosody, including the bilateral inferior frontal gyrus and premotor cortex. They also were found to show less activity in this region during neutral prosodic intonation, indicating that more empathic individuals utilize premotor regions for emotional prosodic perception, but less for non-emotional stimuli. This data support the notion that components of empathy to emotional stimuli may rely on simulation processes carried out, in part, by motor-related areas. Thus, in order to understand someone else's prosodic intonation, we may simulate how we would produce the given intonation ourselves, which in turn may be a component of the process involved in creating empathic feeling for that individual. These data indicate that individuals who score higher on scales of affective empathy also show more activity in motor-related areas during prosody perception. Our findings extend previous correlations between the mirror neuron system and individual differences in empathy to include, for the first time, an emotional auditory stimulus: happy or sad prosodic intonation."
For the record
7 hours ago
No comments:
Post a Comment